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Counterbalancing. We conducted a 4 � 3 � 2 repeated measures
analysis of variance (ANOVA) with factors of Order (A, B, C,
and D), Parameter (�, �, �), and Condition (‘‘Attend’’ and
‘‘Regulate’’). There were no significant interactions with Order
(all F’s � 1, P’s � 0.45).

Task Details. Participants silently read detailed, illustrated task
instructions as the experimenter read them aloud and then
completed a quiz on task instructions. If they made any mistakes,
the instructions were reviewed until the quiz could be completed
without mistakes. See supporting information (SI) Fig. S1 for an
example screenshot from the study.

Monetary Choice Values (Behavioral Session). We performed a
parameter recovery exercise in Mathematica v5.2 to find gamble
values which were efficient for measuring changes in loss aver-
sion (�). In essence, a hypothetical participant was created by
selecting a range of psychologically plausible values for the 3
model parameters (�, �, �) based on results from earlier studies
(See Fig. S2). Stochastic choices were simulated, using those
parameter values and Eq. 3, over the initial monetary amounts.
Given these simulated choices, we then used the maximum-
likelihood procedure to estimate parameters. If the estimated
parameters were close to the actual ones used to create the
simulated data (and had a low variance across multiple simula-
tions), then we could say that the modeling procedure could
‘‘recover’’ parameter values accurately. The method also showed
that the correlation among the 3 recovered values was not too
high so that the parameters were separately identified (in
econometrics terminology). This method of creating our stimuli
improved our ability to accurately recover a range of parameter
values from actual participants given the choices made, and
therefore increased the power of statistical tests to detect
differences across and within subjects due to the strategies.

The monetary amounts were chosen first to accommodate a
range in loss sensitivity from gain-seeking to loss averse and
second with the assumption that most subjects would be risk
averse, with few appreciable risk-seekers. For the 120 mixed
valence gambles, gain outcomes were chosen from the set
{2,4,5,6,8,9,10,12}, and corresponding loss outcomes were de-
rived by multiplying the gain outcomes by a factor ranging from
�1/4 to �2 in increments of 1/8 in a factorial design pairing each
gain outcome with each multiplier. There are 15 multipliers in
the set {�1/4, �3/8, �4/8…�2} and 8 possible gain outcomes,
which yields 120 gain-loss combinations. The 20 gain only
gambles can be seen in Table S1. Possible monetary amounts
thus ranged between �$30 and �$24.

Post hoc, we repeated the parameter recovery exercise with
parameter values we recovered from our data set. The average
Attend parameter values from Study 1 were used to stochasti-
cally simulate choices on the actual set of choice pairs, creating
500 pseudosamples. The estimation procedure was then applied
to each pseudosample. Average recovered parameter values
across the pseudosamples were � � 1.40 (0.09), � � 0.83 (0.05),
and � � 2.79 (0.74). These estimated values are very close or
identical to the true values of � � 1.40, � � 0.83, and � � 2.57.
We also validated the standard error estimates by checking
whether the true parameters fell within an interval 2 standard
errors above and below the mean estimate (the bootstrapped
95% confidence interval) around 95% of the time. We found that
this was indeed the case, with rates of parameter recovery within

this interval of 93.8% (�), 95.8% (�), and 96.6% (�). Results
were virtually identical when done using the average Regulate
parameter values.

The results of Studies 1 and 2 underscore the value of studying
decision-making on an individual-subject basis. Not only did this
approach allow us to identify the substantial variability in loss
aversion in our sample (Fig. 1), but if we had been restricted to
group analyses, most of our results (e.g., the change in loss
aversion within-subjects) would have been masked by that
variability. Most importantly, it was this degree of specificity in
estimation that enabled Study 2 to go beyond general statements
about arousal. We were able to show that across participants,
arousal specifically tracked loss aversion; we also found that our
strategy appeared to reduce the arousal response to losses as
opposed to enhancing the response to gains, for example.
Without an individual approach, these kinds of analyses would
have been impossible.

Monetary Choice Values (Physiological Session). Using individual
participants’ parameter estimates from the behavioral session,
we created choices separately for the Attend and Regulate
condition, with the end goal of equalizing the number of win,
loss, and guaranteed outcomes. In each condition, we created by
random selection 40 choices with an 85–95% chance of being
accepted, and 20 choices with a 5–15% chance of being accepted.
Gain values were bounded between $1 and $30, and loss values
between �$1 and �$24.

Estimation Procedure. A parametric analysis to estimate risk-
aversion and loss-aversion was conducted via a nonlinear sto-
chastic choice model. Following Tversky and Kahneman (1), we
represent subject’s utility functions for money as a 2-part power
function of the form

u�x� � � x�� if x � 0
�� �� � x��� x � 0 [1]

The loss aversion coefficient � represents relative (multiplica-
tive) weighting of losses relative to gains. The function’s expo-
nential form captures the empirical regularity of risk aversion
(seeking) over gains (losses). As stated in the main text, �
represents diminishing sensitivity to changes in value as the
absolute value increases. Monetary amounts are raised to a
power equal to this parameter value, producing an exponential
curve which is concave for gains and convex for losses (if � � 1).
A smaller � represents a higher rate of diminishing sensitivity
and more risk aversion, relative to a larger �. A � value of one
means there is no diminishing sensitivity (i.e., risk neutrality).

The diminishing sensitivity represented by � is equivalent to
risk aversion in the gain domain and risk seeking in the loss
domain, as demonstrated by the following example. Consider a
gamble of �$20/$0 compared to a guaranteed amount of $10.
The objective expected value of the gamble is $10 (expected
value � probability � value, or 0.5 � $20 � 0.5 � $0 � $10), as
is of course the guaranteed amount. Therefore, a risk neutral
individual would be indifferent between this gamble and the
guaranteed amount. However, because the subjective value
equation is exponential, the $20 in the gamble is discounted
relatively more than the $10 in the guaranteed amount, thus
leaving the gamble with a lower subjective value and leading the
individual to reject the gamble for the guaranteed amount (risk
averse behavior). As an example, if � � 0.83 (the average � value
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in the Attend condition in Study 1) the gamble would have a
subjective value of 5.99, and the guaranteed amount a subjective
value of 6.75.

In our analysis, we constrained the degree of curvature of the
utility function, �, to be identical between the gains and the
losses. That is, we assumed that �� � ��. For likelihood ratio
tests of this assumption, see Significance Testing below.

We further assume that people combine probabilities and
utilities linearly, in the form U(p,x) � p�u(x). Note that also
because we constrained P � 0.5 over all uncertain prospects,
nonlinear weighting of probabilities (2, 3) applies equally to all
choices, leaving our results qualitatively unchanged. [The mag-
nitude of underweighting at p � 0.5 is small. Various studies have
empirically estimated functions with w(0.5) 	 0.45 (see e.g.,
ref. 2).]

The probability that the subject chooses the uncertain pros-
pect rather than the degenerate prospect is given by the logit or
softmax function

F�p, x1, x2, c� � �1 � exp
���U�p , x1, x2� � u�c�����1 [2]

where x1 and x2 are the outcomes in the uncertain prospects, and
c the outcome of the degenerate prospect. The logit parameter
� is the sensitivity of choice probability to the utility difference
(the degree of inflection), or the amount of ‘‘randomness’’ in the
subject’s choices (� � 0 means choices are random; as �
increases the function is more steeply inflected at zero). Large
� values mean that participants are not sensitive to small changes
in the values of the monetary amounts, and indicate greater
reliance on ‘‘rule-based’’ decision-making (an infinite � gives a
step function, meaning that participants made decisions as if
based entirely on a calculated rule). A smaller � suggests that as
the difference between the gamble and the guaranteed amount
changed, so did the chance of the participant accepting the
gamble. Another way to frame � is as representing consistency
over choices.

Denote the choice of the subject in trial i as yi, where yi � 1
if subject chooses the gamble, and 0 if the guaranteed alternative.
We fit the data using maximum likelihood, with the log likeli-
hood function

�
i�1

140

yilog�F�p , x1, x2, c�� � �1 � yi� log�1 � F�p , x1, x2, c��

[3]

Because this is a nonlinear optimization problem, numerical
methods must be used. We used the Nelder-Mead simplex
algorithm (4) implemented in Mathematica v5.2.

The standard errors of the estimates were calculated using the
negative of the inverse of the Hessian matrix evaluated at the
estimated parameter values. The Hessian matrix is the matrix of
second partial derivatives of the log likelihood function, and the
negative of the Hessian is called the (observed) information
matrix, which is also the asymptotic variance-covariance matrix.
The square root of the diagonal (variance) terms gives us the
standard error of the estimates.

Intuitively, the Hessian measures the degree of curvature of
the maximum likelihood surface. A more inflected surface
around the estimate implies a more precise estimate (as the
likelihood values decrease faster as one moves away from the
optimal solution).

Significance Testing. The likelihood ratio (LR) test (5) was used
to assess significance of the overall model separately for each
individual in each condition. The test compares the likelihood
values of the full model against the null model in which � ,�, and

� were restricted to 0. The likelihood ratio statistic, expressed in
log, is �2(log(L(�0))�log(L(�))) where � denotes a vector of
parameters. It is distributed asymptotically as a 	2 distribution
with k degrees of freedom, where k is the number of parameter
restrictions of the model (3 in this case).

Similarly, the LR test was used in assessing whether individ-
uals’ loss aversion coefficients differed from 1 (gain-loss neu-
tral). An LR test was used to test the null hypothesis H0: ��1.
In this case, the null distribution is a 	2 distribution with 1 degree
of freedom. In addition, we used the LR test to assess significant
differences of individual parameters between attend and reap-
praise conditions. For each parameter 
�{�,�,�}, an LR test was
used to test the null hypothesis H0: 
att � 
reapp. As before, our
null distribution is a 	2 distribution with 1 degree of freedom.

To test for the presence of individual variations in loss
aversion, risk attitudes, and consistency over choices, we per-
formed an LR test to test for the existence of random effects.
That is, to see if we significantly improved our prediction of the
data by fitting individual models as opposed to one overall model
across our subject pool. Using the data from Study 1 participants,
we compared the summed log likelihood values from the indi-
vidual participants’ model fits with the log likelihood of a single
model fit across all subjects, separately for the Attend and
Regulate conditions. In this case, the null is 	2 distributed with
3 degrees of freedom. The likelihood ratios were 1402.34 and
1523.91 in the Attend and Regulate conditions respectively,
corresponding with p values of approximately zero, and well
below the numerical precision of standard statistical packages.

Curvature (�) Testing. We performed likelihood ratio tests on the
Attend data for the 30 behavioral subjects from Study 1 in a
similar manner as the Attend vs. Regulate significance tests.

First, to test the validity of the �� � �� assumption, we tested
the unconstrained (separate �� and ��) model against the
constrained model (�� � ��). These tests (see Table S2) showed
that the constrained model could be rejected in 12 out of the 30
subjects at P � 0.05, and 9 out of those 12 at P � 0.01. However,
using the unconstrained model worsened the accuracy of our
estimates of the loss aversion parameter � to a great degree (see
Fig. S3), indicating that constraining �� � �� helped consider-
ably improve identification (in terms of the variance of the
parameters) of the model for certain subjects.

We also conducted likelihood ratio tests of the full model
assuming an exponential value function (with the �� � ��

constraint) against a model assuming a linear value function (or
�� � �� � 1), a common simplifying assumption. The results of
these tests (see Table S3) indicate that we can reject linearity in
16 out of 30 subjects at the P � 0.05 level, and 14 out of those
16 at the P � 0.01 level. Because of biasing effects on the
estimates of loss aversion (see below, Estimated Degree of Loss
Aversion), we decided to keep an exponentially curved value
function in our analyses.

The Estimated Degree of Loss Aversion. Despite a general belief that
� is around 2 (as in (1, 6, 7)), many studies report estimates closer
to our average of 1.40. A summary of some other studies
comparable to ours is given in Table S4, along with estimates of
the average degree of loss aversion �. Thirty percent of our
subjects are estimated to have � � 1 in the Attend condition.
Comparable percentages range from 2–25% across the 5 studies
which report individual-level estimates. Thus, while the number
of subjects with � � 1 is higher in our study, previous studies also
show a substantial percentage of subjects with � � 1. Many also
show average loss-aversion coefficients comparable to our value
of 1.40, including means of .82–1.95 (8), 1.43 (9), and 1.2 (10).

There are a variety of experimental factors that could also
influence the degree of loss aversion found in any given study,
although we briefly note that the findings of within-subjects
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designs such as ours are largely unaffected by such questions.
First, risk aversion or diminishing sensitivity (See Estimation
Procedure, above) can look like loss aversion in mixed gambles.
That is, if a subject has diminishing sensitivity and some degree
of loss aversion, but the model used to estimate their behavior
is a linear value function with a loss aversion term, estimates of
the loss aversion term will be biased upwards relative to their
true loss aversion. To illustrate, we reanalyzed our data from the
Study 1 participants in the Attend condition assuming a linear
value function and found that it had the effect of biasing the
corresponding estimates of � upwards, as shown by paired t tests
conducted on both � (t(29) � 2.64 P � 0.02) and log(�) (t(29) �
3.06 P � 0.005). The mean log(�) value with the full model
including exponential curvature was 0.20, whereas the mean
log(�) value estimated from the linear model was 0.26. These
corresponded to mean � coefficient values of 1.22 and 1.30,
respectively (see Fig. S4 for plots of the � estimates from
exponential and linear value functions). Thus, the fact that many
studies use linear value functions, and ours used exponential
functions, could account for a part of the difference between our
estimate and higher estimates found in some studies.

Because, as the previous paragraph suggests, it is impossible
to disentangle loss aversion and risk aversion solely in the context
of mixed-valence gambles, we included gain only trials, in which
loss aversion (by definition) does not factor (20 out of the 140
choices were gain only choices).

Choice set construction can also conceivably have a biasing
effect on estimates of loss aversion. For example, our choice set
was constructed with the side effect that if subjects mindlessly
accepted the best 50% of available gambles, we would recover a
� of roughly 1. Other choice sets might have the property that
such an acceptance rule would be consistent with higher values
of �. Another possible factor could be a combination effect in
which after losses, subjects might have bet more to catch up, and
after gains, bet more because they perceived their winnings as
‘‘house money’’—the net effect would increase betting and
decrease estimates of loss aversion.

Beyond choice set construction, payment might have similarly
strong effects on choice behavior. As an example, it is possible
that our procedure encouraged a natural low baseline level of
choice bracketing because of the payment structure (participants
were paid the outcomes of a randomly selected 10% of their
choices or 28 outcomes in the behavioral study rather than all
outcomes or a single outcome) and/or because participants were
completing 140 choices in each condition for a total of 280
choices. If participants were paid for, or were presented with,
more or fewer choices, that baseline bracketing could conceiv-
ably be shifted. In a slightly different vein, it is possible that
participants could perceive a ‘‘no bankruptcy clause’’ induced by
the maximum potential loss of $30 (the entire endowment),
which could affect their choices in some systematic fashion,
potentially increasing betting and thereby decreasing loss aver-
sion estimates. Alternatively phrased, it is possible that partici-
pants’ utility functions were flat below �$30. The model we used
considers the value function only in regard to independent
choices. The no bankruptcy clause critique implicitly suggests a
model of value that takes into account multiple choices and/or
outcomes at the time of any single choice. Without a clear or
obvious hypothesis as to the structure of that model, we felt
unable to straightforwardly test it. This general question of
payment is present in all laboratory studies on monetary decision
making—if there is no endowment, then either choices must be
hypothetical, or there will be a self-selection bias in the subject
population willing to play with substantial sums of their own
money. If those alternatives are not acceptable, then there is the
aforementioned concern with endowments.

Another factor is whether feedback about outcomes is pre-

sented after each trial or not. Our design does have feedback
because we were interested in psychophysiological reactions to
actual loss (not just anticipated loss effects). Having a large set
of choices with feedback could induce a natural ‘‘broad brack-
eting’’ in which losses are integrated with past or expected future
gains and hence have less impact. It is possible that this may have
resulted in some automatic regulation of losses of the kind
suggested by research on emotional adaptation (11) and over-
estimation of the effects of losses (12). As an example, a paper
comparing student and professional betting patterns with feed-
back suggested that ‘‘consistent with the notion that repetition
might attenuate such anomalies… analysis of the data from the
student sessions provides some evidence that the effect of the
domain [gain or loss] is mitigated via repetition (13).’’

We view our design features as creating a conservative lower
boundary on measures of loss aversion compared to other types
of designs and estimation methods. The fact that loss aversion is
still substantial and present in a large majority of subjects is
encouraging considering the design features which could mini-
mize it. Furthermore, the fact that emotion regulation can still
have a large and persistent effect in reducing loss aversion when
it is modest to begin with is therefore even more remarkable.

Strategy Instructions. The following instructions were provided in
written form to the subjects and were read aloud to them as they
read along silently. The strategies were practiced with the
experimenter before the study.

Attend. When you see Attend before a block of trials, focus on
each of the following monetary decisions in complete isolation
from all other decisions. Tell yourself it is the only gamble that
matters, that this one might be the one you get paid for. As such,
you might win the positive amount, but you could just as easily
lose the negative amount and have to give that money back to the
experimenter. Approach each trial as if you are making only this
one choice in today’s study.

Concentrate on the values in that one gamble, its possible
outcomes, and the guaranteed alternative. Ask yourself how you
would feel if you won the positive amount, how you would feel
if you lost the negative amount, and how you feel about the
guaranteed amount. Just let any thoughts or emotions about that
particular choice occur naturally, without trying to control them.

It is important that you focus on the monetary decision in front
of you at that time, in isolation from any context.

Reappraise. When you see ‘‘Reappraise’’ before a block of trials,
think of each of the following monetary decisions in the context
of all of the previous and following choices during Reappraise
trials. That is, treat it as one of many monetary decisions, which
will constitute a ‘‘portfolio.’’ Remind yourself that you are
making many of these similar decisions. Do not keep a running
total—simply approach these gambles keeping in mind their
context.

Imagine you are considering one of the monetary decisions in
this task right now.

One way to think of this instruction is to imagine yourself a
trader. You take risks with money every day, for a living. Imagine
that this is your job and that the money at stake is not yours—it
is someone else’s. Of course, you still want to do well (your job
depends on it). You have done this for a long time, though, and
will continue to. All that matters is that you come out on top in
the end—a loss here or there will not matter in terms of your
overall portfolio. In other words, you win some and you lose
some.

It is important that you focus on these monetary decisions in
the context of all of the other monetary decisions you will be
making today during the Reappraise trials.
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Fig. S1. A sample screenshot from the study. The 2 boxes on the left represent the gamble’s possible gain and loss amounts (Top and Bottom, respectively).
The box on the right represents the guaranteed amount. Participants had to indicate whether they wanted to accept the gamble.
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Fig. S2. Examples of functions from the behavioral model used to quantify choice behavior. (a) Stylized gain-loss value functions showing representative �

values. On the x axis is objective value (e.g., $5, $10). On the y axis is the subjective value to the individual. As � values increase, the value function becomes steeper
in the loss domain, indicating greater negative subjective value for the same objective value. (b) Stylized gain value functions showing representative � values.
As in a, the x axis represents objective value, and the y axis represents subjective value. A smaller � value indicates more curvature and thus more diminishing
sensitivity with increasing value. Risk aversion arises from diminishing sensitivity (see SI Text). (c) Stylized decision functions showing representative � values.
On the x axis is the difference between the subjective values of the gamble (‘‘u(gamble)’’) and the guaranteed amount (‘‘u(guaranteed)’’). On the y axis is the
probability of accepting the gamble. In the middle of the graph is the indifference point, where the subjective value of the gamble and the guaranteed amount
are equal, and participants are equally likely to accept or reject the gamble. As � increases, the function shifts more quickly from rejecting the gamble to accepting
the gamble and becomes less sensitive to changes in the gamble-guaranteed difference outside of the indifference point. Alternately, a high � value means the
participant was very consistent across decisions.
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Fig. S3. Estimates of the loss aversion parameter � in unconstrained (separate �� and ��) and constrained (�� � ��) models.
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Fig. S4. Estimates of the loss aversion coefficient � from exponential (�� � ��) and linear (�� � �� � 1) models.
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Table S1. Monetary amounts in gain-only gambles

Gamble Certain

2 1
3 1
4 2
5 2
7 3
8 3

12 6
12 5
12 4
13 5
13 6
19 8
22 10
23 10
25 9
25 10
26 10
26 12
28 13
30 12
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Table S2. Likelihood ratio tests of unconstrained (separate ��

and ��) versus constrained (�� � ��) models

Subject Log Likelihood Ratio P value

1 16.51 �0.001
2 14.42 �0.001
3 2.98 0.084
4 2.81 0.094
5 5.65 0.017
6 15.98 �0.001
7 1.31 0.253
8 10.35 0.001
9 30.35 �0.001

10 3.03 0.082
11 1.23 0.267
12 4.00 0.045
13 1.89 0.169
14 1.76 0.185
15 16.12 �0.001
16 0.30 0.587
17 3.32 0.068
18 0.10 0.758
19 7.25 0.007
20 0.09 0.768
21 2.41 0.120
22 18.20 �0.001
23 5.41 0.020
24 0.18 0.668
25 21.63 �0.001
26 1.75 0.186
27 0.46 0.497
28 2.13 0.145
29 0.82 0.365
30 0.69 0.407

(P � 0.05 indicates rejection of the constrained model)
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Table S3. Likelihood ratio tests of exponential (�� � ��) versus
linear (�� � �� � 1) models

Subject Log Likelihood Ratio P value

1 0.24 0.622
2 0.05 0.827
3 22.94 �0.001
4 3.33 0.068
5 27.25 �0.001
6 7.31 0.007
7 0.55 0.459
8 33.88 �0.001
9 2.53 0.112

10 8.60 0.003
11 31.08 �0.001
12 23.65 �0.001
13 32.24 �0.001
14 8.14 0.004
15 3.32 0.069
16 0.06 0.804
17 0.11 0.738
18 35.86 �0.001
19 0.07 0.789
20 29.64 �0.001
21 2.33 0.127
22 0.09 0.759
23 6.48 0.011
24 1.54 0.215
25 0.00 0.950
26 4.28 0.038
27 0.01 0.928
28 26.28 �0.001
29 6.92 0.009
30 12.99 �0.001

(P � 0.05 indicates rejection of the linear model)
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Table S4. Estimates of loss aversion (�) from a variety of studies

Study � estimate
Types of Choices
& Payoff Range

Outcomes in
the task?

Estimated w/risk
aversion & �(p)? % Subjects � � 1

1 1.93 (Median), 256 mixed (�/� vs. 0) gambles. No No 6%
Range 0.99–6.75. Gains $10 to $40 matched with

losses -$5 to -$20.
Realized 3 trials.

2 Using medians: 1.20, 1.25, 1.25,
1.25, 1.25, 1.40, 1.67, 2.40.

WTP/WTA/CE experiments with
chocolate, chocolate
vouchers, and money.

No N.A. Not reported.

Using means: 0.82, 1.08, 1.16,
1.18, 1.22, 1.24, 1.80, 1.95.

Realized 1 money/chocolate
exchange.

Required transitivity.
3 2.6–2.8 (mean) Monkeys choosing fruit. Yes No Not reported.

Realized every choice.
4 2.25 (median) Certainty equivalent for mixed

and gain-only prospects.
No Yes (exponential value

function, �(p) estimates)
Not reported.

Not paid for choices (subject fee
only).

Required transitivity.
5 1.43 (mean) Certainty equivalents and risky

gamble choices.
No N.A. 24%

Not paid for choices (subject fee
only).

6. N.A. (no function-fitting, only
counting choices)

106 choices between pairs of
tripartite gambles (both
mixed valence & gain-only
trials).

No N.A. 24%

7 1.8 (mean) Certainty equivalent hog prices
with farmers.

No Yes (exponential value
function).

Not reported.

Not paid for choices (subject fee
only).

8 Using medians: 1.69, 0.74, 1.48,
0.43, 2.54


Bisection
 method
(choice-based certainty
equivalents).

No N.A. (applied multiple
estimation methods)

2–25% (applied multiple
estimation methods)

Using means: 2.04, 1.07, 1.71,
0.74, 8.27

Not paid for choices (subject fee
only).

9 2.08 (overall). Retirement fund distributions. No Yes (exponential value
function).

Not reported.

Diff. subj. groups & conditions: Not paid for choices (subject fee
only).

2.22, 1.44, 3.97, 1.54 (medians)
10 Agg. Riskless: 2.29 (btwn-subj),

1.95 (within-subj).
Riskless: WTA/WTP for a model

car.
No No Riskless condition: 4.9%

Indiv. Riskless: 2.62 (mean), 2.0
(median)

Risky: 6 lottery choices. Risky condition: 16%

Risky: 1.2 (median) Required transitivity.
Realized WTA, WTP & one

lottery.
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